切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2024, Vol. 18 ›› Issue (06) : 795 -799. doi: 10.3877/ cma.j.issn.1674-134X.2024.06.015

临床经验

智能骨盆骨折微创复位机器人系统的早期疗效分析
代永鸿1, 杨匡洋1,(), 吴征杰1, 曾焰辉1, 赵春鹏2, 王军强2, 吴新宝2   
  1. 1.528000 佛山,广州中医药大学第八临床医学院
    2.100035 北京积水潭医院创伤骨科
  • 收稿日期:2024-03-05 出版日期:2024-12-01
  • 通信作者: 杨匡洋
  • 基金资助:
    国家重点研发计划项目(2022YFC2407500)

Early efficacy analysis of an intelligent minimally invasive reduction robot system for pelvic fractures

Yonghong Dai1, Kuangyang Yang1,(), Zhengjie Wu1, Yanhui Zeng1, Chunpeng Zhao2, Junqiang Wang2, Xinbao Wu2   

  1. 1.The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan 528000, China
    2.Department of Orthopedic Trauma, Beijing Jishuitan Hospital, Beijing 100035, China
  • Received:2024-03-05 Published:2024-12-01
  • Corresponding author: Kuangyang Yang
引用本文:

代永鸿, 杨匡洋, 吴征杰, 曾焰辉, 赵春鹏, 王军强, 吴新宝. 智能骨盆骨折微创复位机器人系统的早期疗效分析[J/OL]. 中华关节外科杂志(电子版), 2024, 18(06): 795-799.

Yonghong Dai, Kuangyang Yang, Zhengjie Wu, Yanhui Zeng, Chunpeng Zhao, Junqiang Wang, Xinbao Wu. Early efficacy analysis of an intelligent minimally invasive reduction robot system for pelvic fractures[J/OL]. Chinese Journal of Joint Surgery(Electronic Edition), 2024, 18(06): 795-799.

目的

探讨智能骨盆骨折微创复位机器人系统治疗不稳定型骨盆骨折的早期疗效,并分析其临床优势、局限性及注意事项。

方法

回顾性分析2022年6月至2023年11月于佛山市中医院利用该机器人系统治疗的25例不稳定型骨盆骨折患者的病历资料。其中TileB型5例,TileC型20例。在机器人系统辅助下完成微创闭合复位。手术前后拍摄骨盆CT及前后位、出口位、入口位X线片,根据X线及CT影像测量前后环复位前后的最大位移,采用Matta标准评估复位质量。记录前后环复位前后的最大位移、透视频率、透视时间、复位时间、手术时间、术中出血量,并计算复位前后环所需的距离。术后记录骨折愈合时间及随访时间,并利用Majeed评分系统进行功能评价。

结果

在机器人系统辅助下,所有患者都成功完成了微创闭合复位。前后环复位前的最大位移分别为(16±7)mm、(9±6)mm。透视次数为31(19,58)次,透视时间为(31±16)s,复位时间为(59±4)min,手术时间为206(200,213)min,术中失血量为100(50,160)ml,前后环复位后的最大位移分别为2.1(0,7.6)mm、3.8(1.4,7.9)mm。复位前后环所需的距离分别为14(4,18)mm、4.0(1.8,6.6)mm。根据Matta标准,前后环的复位质量均为:优15例、良7例、可2例,优良率为91.7%。24例患者获得16(14,19)个月随访,骨折愈合时间为3(3,4)个月,末次随访时Majeed功能评分为(85±8)分,其中优9例,良16例,优良率为100%。

结论

在本研究中,该系统可以为大多数不稳定型骨盆骨折患者完成精准、微创的闭合复位,可以获得良好的复位质量和早期疗效。

Objective

To discuss the early efficacy of the intelligent minimally invasive reduction robot system for pelvic fractures in the treatment of unstable pelvic fractures, and to analyze its clinical advantages, limitations and precautions.

Methods

A retrospective evaluation was conducted on 25 patients with unstable pelvic fractures treated by the robot system at the trauma orthopedics department of Foshan Traditional Chinese Medicine Hospital between June 2022 and November 2023. According to the Tile classification, there were 20 cases of type C and five cases of type B fractures. Minimally invasive closed reduction of pelvic fractures were performed with the assistance of the robot system. Pelvic CT scans and X-ray images at anteroposterior, outlet, and inlet positions were taken before and after surgery. The maximum displacement of the anterior and posterior pelvic rings before reduction and the maximum residual displacement of anterior and posterior pelvic rings after reduction were measured according to X-ray and CT images, and the quality of fracture reduction was evaluated by Matta criteria. The maximum displacement of the anterior and posterior pelvic rings before reduction, fluoroscopy frequency and time, reduction time, operation time,intraoperative blood loss, and maximum residual displacement of anterior and posterior pelvic rings after reduction were documented, and the distance required for the robotic arm to reduce the anterior and posterior pelvic rings was calculated. The fracture healing time and postoperative monitoring period were recorded, and the Majeed scoring system was used for functional evaluation.

Results

With the assistance of the robot system, 25 patients were all successfully treated with minimally invasive closed reduction for pelvic fractures. The average maximum displacement before reduction of the anterior pelvic ring was (16±7) mm. The average maximum displacement before reduction of the posterior pelvic ring was (9±6) mm. The intraoperative fluoroscopy frequency was 31 (19,58) times. The average fluoroscopy time was (31±16) s. The average reduction time was (59±4) min. The surgery time was 206 (200,213) min. The intraoperative blood loss was 100 (50,160) ml . The maximum residual displacement after reduction of the anterior and posterior pelvic rings were 2.1 (0, 7.6) mm, 3.8 (1.4,7.9)respectively. The distance required for the robotic arm to reduce the anterior and posterior pelvic rings were 14 (4,18) mm, 4.0 (1.8,6.6) mm respectively. According to Matta criteria, the reduction quality of both the anterior and posterior pelvic ring was excellent in 15 cases, good in seven cases, and fair in two cases, with a good-toexcellent rate of 91.7%. The fracture healing time was 3 (3, 4) months. Follow-up time for the 24 cases was 16 (14,19) months, with the Majeed functional score (85±8) on average. Nine cases scored excellent, and 16 cases were good, with a good-to-excellent rate of 100%.

Conclusion

In this study, the robot system can facilitate precise and minimally invasive closed reduction for the majority of patients with unstable pelvic fractures, achieving satisfactory fracture reduction quality and early efficacy.

图1 智能骨盆骨折微创RAFR(复位机器人系统)的组成
Figure 1 Composition of the intelligent minimally invasive RAFR (robot-assisted fracture reduction system)for pelvic fracture
图2 智能骨盆骨折微创RAFR(复位机器人系统)在手术室的空间布局
Figure 2 The spatial layout of the intelligent minimally invasive RAFR (robot-assisted fracture reduction system)for pelvic in the operating room
图3 骨盆CT扫描三维重建,示术前复位路径规划后,对复位路径和目标位置进行微调
Figure 3 Three dimentional CT scan reconstruction of pelvis, showing fine-tuning of the reduction path and target position after the preoperative planning of the reduction path
图4 三维实时显示把持针置入的位置和深度
Figure 4 Three-dimensional real-time display of the position and depth of the needle insertion
[1]
Verma V, Sen RK, Tripathy SK, et al. Factors affecting quality of life after pelvic fracture[J]. J Clin Orthop Trauma, 2020, 11( 6 ):1016-1024.
[2]
Gericke L, Fritz A, Osterhoff G, et al. Percutaneous operative treatment of fragility fractures of the pelvis may not increase the general rate of complications compared to non-operative treatment[J]. Eur J Trauma Emerg Surg, 2022, 48( 5 ): 3729-3735.
[3]
Han R, Uneri A, Vijayan RC, et al. Fracture reduction planning and guidance in orthopaedic trauma surgery via multi-body image registration[J/OL]. Med Image Anal, 2021, 68: 101917. DOI:10.1016/j.media.2020.101917.
[4]
Zhao C, Wang Y, Wu X, et al. Design and evaluation of an intelligent reduction robot system for the minimally invasive reduction in pelvic fractures[J/OL]. J Orthop Surg Res, 2022, 17( 1 ): 205. DOI:10.1186/s13018-022-03089-2.
[5]
Zhao C, Cao Q, Sun X, et al. Intelligent robot-assisted minimally invasive reduction system for reduction of unstable pelvic fractures[J]. Injury, 2023, 54( 2 ): 604-614.
[6]
贾鹏, 吴新宝.骨科机器人辅助手术在创伤骨科的临床应用现状与发展[J]. 中华创伤骨科杂志,2023,25:433-439.
[7]
Yu YH, Liu CH, Hsu YH, et al.Matta's criteria may be useful for evaluating and predicting the reduction quality of simultaneous acetabular and ipsilateral pelvic ring fractures[J/OL]. BMC Musculoskelet Disord, 2021, 22( 1 ): 544. DOI: 10.1186/s12891-021-04441-z.
[8]
Majeed SA. Grading the outcome of pelvic fractures[J]. J Bone Joint Surg Br, 1989, 71( 2 ): 304-306.
[9]
李灿辉, 吴征杰, 曾焰辉, 等. 骨科机器人辅助微创手术治疗骨盆骨折的临床应用研究[J]. 北京生物医学工程, 2022,41( 2 ):134-139.
[10]
Zhao C, Guan M, Shi C, et al. Automatic reduction planning of pelvic fracture based on symmetry[J]. Comput Meth Biomech Biomed Eng Imag Vis, 2022, 10( 6 ): 577-584.
[11]
Kausch L, Thomas S, Kunze H, et al. Toward automatic C-arm positioning for standard projections in orthopedic surgery[J]. Int J Comput Assist Radiol Surg, 2020, 15( 7 ): 1095-1105.
[12]
LiuJ, XuK, ZhaoC, et al. Experimental and finite element analysis studies of a reduction-force reducing traction method for pelvic fracture surgeries[J/OL]. Med Nov Technol Devices, 2022, 13:100101 DOI: 10.1016/j.medntd.2021.100101.
[1] 曾敬, 吴冬冬, 邵明, 范震波, 王治国, 刘培谊, 兰海峰. 高龄髋部骨折患者不同手术时机的围手术期疗效评估[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 445-449.
[2] 杜雪清, 冯周莲, 钟佩珍, 潘杏玲. 老年股骨粗隆间骨折患者应用护士主导的共管模式[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 421-426.
[3] 张江礼, 刘金辉, 潘西庆, 刘光源, 范虓. 全膝关节置换应用智能辅助手术导航系统治疗膝骨关节炎[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 346-351.
[4] 沈建成, 阮安民, 刘壮. 两种关节评分联用评价两种手术治疗老年股骨粗隆间骨折[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 329-336.
[5] 欧梁, 齐麒, 胡伟伟, 卢敏, 黄彦昌, 黄维琛, 匡建军. 股骨颈动力交叉钉系统与其它内固定治疗股骨颈骨折对比[J/OL]. 中华关节外科杂志(电子版), 2024, 18(01): 92-105.
[6] 中华医学会骨科学分会关节外科学组, 广东省医学会骨质疏松和骨矿盐疾病分会, 广东省佛山市顺德区第三人民医院. 中国髋部脆性骨折术后抗骨质疏松药物临床干预指南(2023年版)[J/OL]. 中华关节外科杂志(电子版), 2023, 17(06): 751-764.
[7] 刘丹丹, 宋鸣, 李霞, 徐夏君. 老年髋部骨折术后便秘的影响因素及其列线图预测模型[J/OL]. 中华关节外科杂志(电子版), 2023, 17(05): 607-612.
[8] 王波, 许珂, 刘林, 张斌飞, 庄岩, 许鹏. 全髋关节置换术在老年髋臼骨折中的应用[J/OL]. 中华关节外科杂志(电子版), 2023, 17(03): 385-390.
[9] 王晓伟, 王晔来, 徐宇航, 征华勇, 张建政, 刘智, 孙天胜. 老年髋部骨折后血钠紊乱与死亡风险的相关研究[J/OL]. 中华关节外科杂志(电子版), 2023, 17(02): 186-194.
[10] 李凯, 刘振东, 贾大洲, 李小磊, 王静成. 股骨粗隆间骨折术后非感染性发热因素及风险模型[J/OL]. 中华关节外科杂志(电子版), 2022, 16(05): 547-554.
[11] 唐大军, 余建翔, 马方全. 比较两种假体半髋置换治疗高龄不稳定转子间骨折[J/OL]. 中华关节外科杂志(电子版), 2022, 16(01): 119-123.
[12] 匡芸芸, 张悦, 张其梦, 张玉梅. 延续管理对老年COPD髋部骨折术后患者肺功能恢复的临床分析[J/OL]. 中华肺部疾病杂志(电子版), 2023, 16(02): 251-253.
[13] 黄秉志, 陈楠楠. 髋部骨折术后肺炎发生的危险因素分析[J/OL]. 中华老年骨科与康复电子杂志, 2022, 08(06): 338-344.
[14] 李泽佳, 康新民, 王临青, 朱德祥, 王国玉. 老年髋部骨折的防治进展[J/OL]. 中华老年骨科与康复电子杂志, 2022, 08(03): 188-192.
[15] 石文俊, 商培洋, 成翔宇, 石继祥, 刘孚瑛, 庞金辉, 张磊, 章筛林. 加速康复外科理念在高龄髋部骨折围术期的应用效果[J/OL]. 中华老年骨科与康复电子杂志, 2022, 08(01): 10-17.
阅读次数
全文


摘要